

Recursion-tree and Master Methods

Kuan-Yu Chen (陳冠宇)

2019/03/13 @ TR-310-1, NTUST

Review

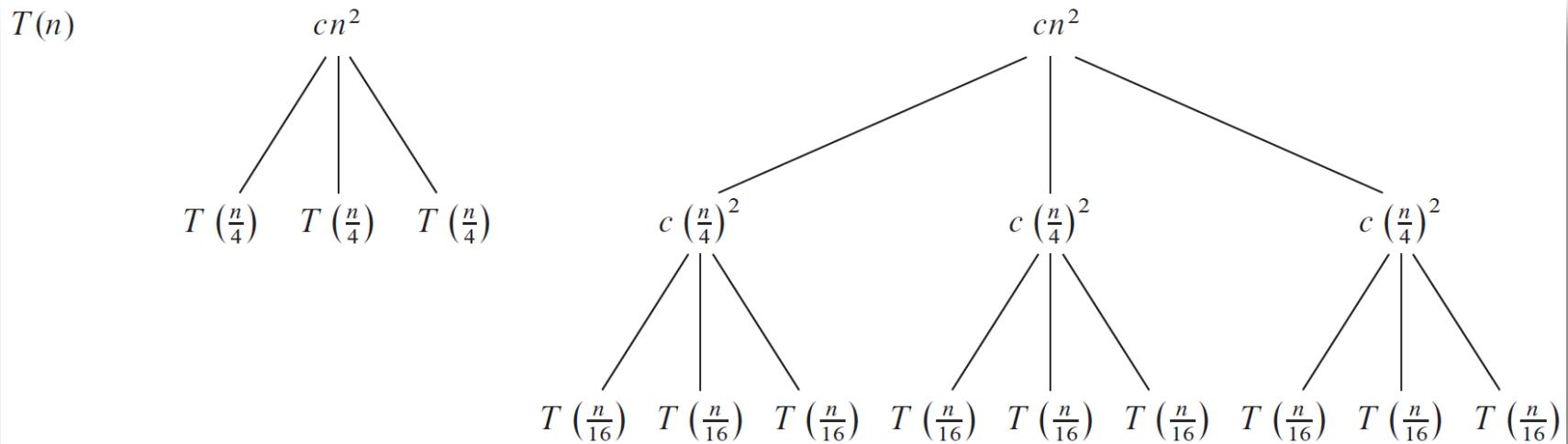
- There are three methods for obtaining asymptotic “ Θ ” or “ O ” bounds on the solution
 - Substitution method
 1. Guess the form of the solution
 2. Use mathematical induction to find the constants and show that the solution works
 - Recursion-tree method
 - Master method

Recursion-tree Method.

- Although you can use the substitution method to provide a solution to a recurrence, you might have trouble coming up with a good guess
- Recursion-tree method serves as a straightforward way to devise a good guess
 - In a *recursion tree*, each node represents the cost of a single subproblem
 - We sum all of the costs to determine the total cost of the recursion

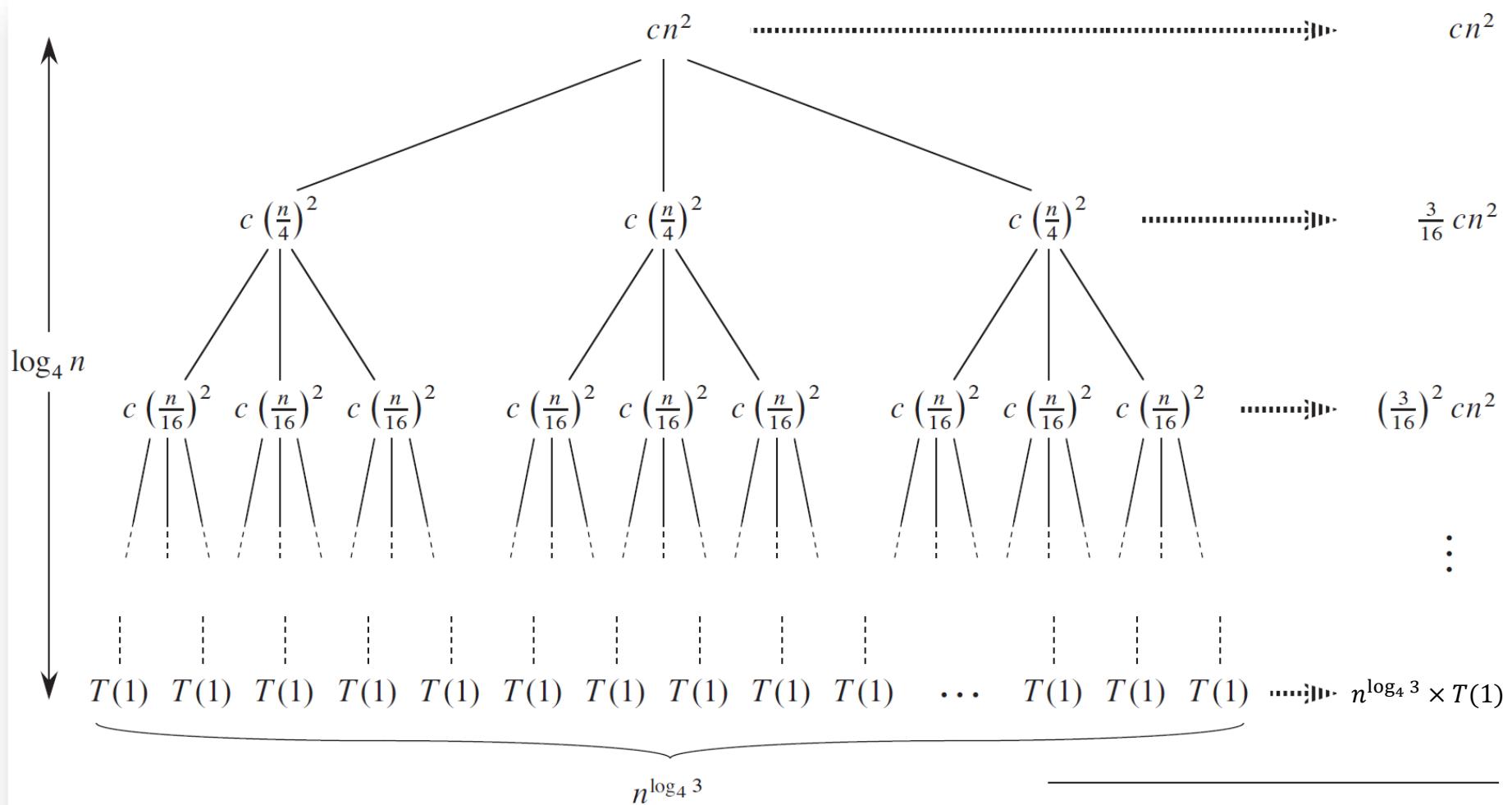
Recursion-tree Method..

- Take $T(n) = 3T\left(\frac{n}{4}\right) + cn^2$ for example
 - For convenience, we assume that n is an exact power of 4



Recursion-tree Method...

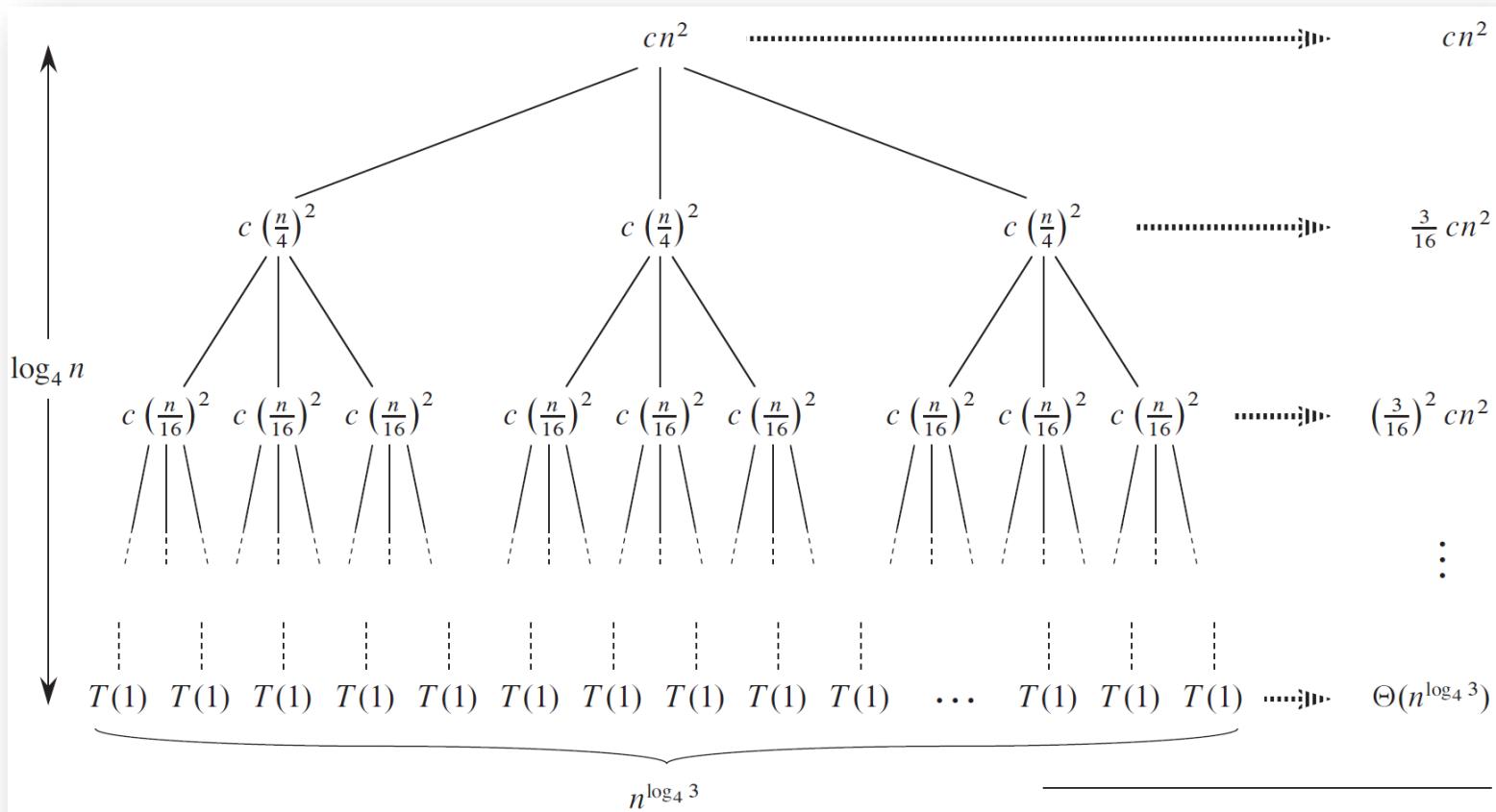
- The fully expanded tree has height $\log_4 n$, that is it has $(\log_4 n) + 1$ levels



Recursion-tree Method...

- Now we add up the costs over all levels to determine the cost for the entire tree

$$T(n) = cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2 cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n - 1} cn^2 + n^{\log_4 3} T(1)$$



Recursion-tree Method....

- We assume that $T(1)$ is a constant

$$\begin{aligned} T(n) &= cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2 cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n-1} cn^2 + n^{\log_4 3}T(1) \\ &= cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2 cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n-1} cn^2 + \Theta(n^{\log_4 3}) \\ &= \Theta(n^{\log_4 3}) + cn^2 \left(\sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i \right) \\ &= \Theta(n^{\log_4 3}) + cn^2 \frac{\left(\frac{3}{16}\right)^{\log_4 n} - 1}{\frac{3}{16} - 1} \end{aligned}$$

- Too hard to analysis!!

Recursion-tree Method.....

- Let's back up one step

$$\begin{aligned} T(n) &= cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2 cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n-1} cn^2 + n^{\log_4 3}T(1) \\ &= \Theta(n^{\log_4 3}) + cn^2 \left(\sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i \right) \\ &< \Theta(n^{\log_4 3}) + cn^2 \left(\sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i \right) \\ &= \Theta(n^{\log_4 3}) + cn^2 \frac{1}{1 - \frac{3}{16}} \\ &= \Theta(n^{\log_4 3}) + cn^2 \frac{16}{13} \\ &= O(n^2) \end{aligned}$$

Master Method.

- The master method provides a “cookbook” method for solving recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \geq 1$ and $b > 1$ are constants and $f(n)$ is a positive function

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

Master Method..

- The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

- Take $T(n) = 9T\left(\frac{n}{3}\right) + n$ for example
 - $a = 9, b = 3$, and $f(n) = n$
 - $f(n) = n = O(n^{\log_b a - \epsilon}) = O(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$
 - $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)$
 - Case1

Master Method...

- The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

- Take $T(n) = T\left(\frac{2n}{3}\right) + 1$ for example

- $a = 1, b = \frac{3}{2}$, and $f(n) = 1 \Rightarrow n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0 = 1$
- $f(n) = 1 = \Theta(1) = \Theta(n^{\log_b a})$
- $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(\log_2 n)$
- Case2

Master Method....

- The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

- Take $T(n) = 3T\left(\frac{n}{4}\right) + n \log_2 n$ for example
 - $a = 3, b = 4$, and $f(n) = n \log_2 n \Rightarrow n^{\log_b a} = n^{\log_4 3}$
 - $f(n) = \Omega(n^{\log_4 3 + \epsilon})$
 - $af\left(\frac{n}{b}\right) = 3f\left(\frac{n}{4}\right) = 3 \frac{n}{4} \log_2 \frac{n}{4} = \frac{3}{4}n \log_2 n - \frac{3}{2}n \leq cn \log_2 n = cf(n)$, when $c = \frac{3}{4}$
 - $T(n) = \Theta(f(n)) = \Theta(n \log_2 n)$
 - Case3

Master Method.....

- The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

- In each of the three cases, we compare $f(n)$ with $n^{\log_b a}$
- In case1, $n^{\log_b a}$ is larger than $f(n)$, thus $T(n) = \Theta(n^{\log_b a})$
- In case3, $f(n)$ is larger than $n^{\log_b a}$, thus $T(n) = \Theta(f(n))$
- In case2, $f(n)$ and $n^{\log_b a}$ are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(f(n) \log_2 n)$

Questions?

kychen@mail.ntust.edu.tw